- 0
- 5
- 10
- 15
- 20
Solution :
Choice 3 is the answer.
This is a very basic question. The usual method of dealing with absolute values in integrals is to split it into a sum of two integrals and remove the absolute values. Since |x+1| is negative on [-3, 1) and positive on [-1, 3]\,\,\, , we can split the integral into: \int_{-3}^3{|x+1|\,dx}=-\int_{-3}^{-1}{(x+1)\,dx}+\int_{-1}^3{(x+1)\,dx}=10. Another way of doing this problem is to imagine the graph of |x+1| and realize that the integral is the sum of two 45-45-90 triangles (one with base 2 and height 2, the other with base 4 and height 4). Simply add the area of triangles up and we're done.
Bonus question: Given that c is a constant, what is \int_{-\infty}^{\infty}{e^{-|x+c|}\,dx}?
This is a very basic question. The usual method of dealing with absolute values in integrals is to split it into a sum of two integrals and remove the absolute values. Since |x+1| is negative on [-3, 1) and positive on [-1, 3]\,\,\, , we can split the integral into: \int_{-3}^3{|x+1|\,dx}=-\int_{-3}^{-1}{(x+1)\,dx}+\int_{-1}^3{(x+1)\,dx}=10. Another way of doing this problem is to imagine the graph of |x+1| and realize that the integral is the sum of two 45-45-90 triangles (one with base 2 and height 2, the other with base 4 and height 4). Simply add the area of triangles up and we're done.
Bonus question: Given that c is a constant, what is \int_{-\infty}^{\infty}{e^{-|x+c|}\,dx}?
0 comments:
Post a Comment
This webpage is LaTeX enabled. To type in-line formulae, type your stuff between two '$'. To type centred formulae, type '\[' at the beginning of your formula and '\]' at the end.
Post a Comment