## Pages

News: Currently the LaTeX and hidden solutions on this blog do not work on Google Reader.
Email me if you have suggestions on how to improve this blog!

## Sunday, 14 August 2011

### Math GRE - #13

Determine the set of real numbers x for which the series below is convergent: $\sum_{n=1}^{\infty}\frac{n!x^{2n}}{n^{n}\left(1+x^{2n}\right)}$
• $\{0\}$
• $\{x: -1 \leq x \leq 1\}$
• $\{x: -1 < x < 1\}$
• $\{x: -\sqrt{e} \leq x \leq \sqrt{e}\}$
• $\mathbb{R}$

Solution :

The answer is $\mathbb{R}$.

Note that for all numbers $x\in\mathbb{R}$, $x^{2n}\geq 0\implies \frac{x^{2n}}{1+x^{2n}}\leq \frac{x^{2n}}{x^{2n}}=1.$
This means that $\sum_{n = 1}^\infty \frac{n! x^{2n}}{n^n(1 + x^{2n})} < \sum_{n = 1}^\infty \frac{n!}{n^n}.$ Thus, if we can prove that $\sum_{n = 1}^\infty \frac{n!}{n^n}$ is convergent, then by the comparison test our original series is convergent for all $x$.

By the ratio test,  $\sum_{n = 1}^\infty \frac{n!}{n^n}$ converges as:
$\begin{eqnarray*} \lim_{n\rightarrow\infty}\frac{a_{n+1}}{a_{n}} & = & \lim_{n\rightarrow\infty}\frac{(n+1)!}{(n+1)^{n+1}}\cdot\frac{n^{n}}{n!} \\ & = & \lim_{n\rightarrow\infty}\frac{n+1}{n}\cdot\left(\frac{n}{n+1}\right)^{n+1} \\ & = & \lim_{n\rightarrow\infty}\left(\frac{n}{n+1}\right)^{n} \\ & = & \lim_{n\rightarrow\infty}\left(1-\frac{1}{n+1}\right)^{n} \\ & = & \frac{1}{e} \end{eqnarray*}$
Where the last line is essentially a result of the limit definition of e.

Note that if we hadn't guessed that the answer was $\mathbb{R}$, it would have been safer to do the ratio test on the original sequence directly and obtain the same answer (the method above just saves a bit of work).

This webpage is LaTeX enabled. To type in-line formulae, type your stuff between two '\$'. To type centred formulae, type '$' at the beginning of your formula and '$' at the end.