## Pages

News: Currently the LaTeX and hidden solutions on this blog do not work on Google Reader.
Email me if you have suggestions on how to improve this blog!

## Saturday, 6 August 2011

### Math GRE - #5

Determine the value of $\sum_{k=1}^{\infty}\frac{k^2}{k!}.$

• $e$
• $2e$
• $(e+1)(e-1)$
• $e^2$
• $\infty$

Solution :

Note that $\sum_{k=1}^{\infty}\frac{k^{2}}{k!}=\sum_{k=1}^{\infty}\frac{k}{(k-1)!} =\sum_{k=1}^{\infty}\frac{k-1}{(k-1)!}+\sum_{k=1}^{\infty}\frac{1}{(k-1)!}$

Now if we adjust the indices a little, we obtain:
$\begin{eqnarray*} \sum_{k=1}^{\infty}\frac{k-1}{(k-1)!}+\sum_{k=1}^{\infty}\frac{1}{(k-1)!} & = & \sum_{k=0}^{\infty}\frac{k}{k!}+\sum_{k=0}^{\infty}\frac{1}{k!} \\ & = & \sum_{k=1}^{\infty}\frac{k}{k!}+\sum_{k=0}^{\infty}\frac{1}{k!} \\ & = & \sum_{k=1}^{\infty}\frac{1}{(k-1)!}+\sum_{k=0}^{\infty}\frac{1}{k!} \\ & = & \sum_{k=0}^{\infty}\frac{1}{k!}+\sum_{k=0}^{\infty}\frac{1}{k!} \end{eqnarray*}$

What we have left is just two series definition of $e$ added to each other, hence the answer is $2e$.

This webpage is LaTeX enabled. To type in-line formulae, type your stuff between two '\$'. To type centred formulae, type '$' at the beginning of your formula and '$' at the end.