Pages

News: Currently the LaTeX and hidden solutions on this blog do not work on Google Reader.
Email me if you have suggestions on how to improve this blog!

Thursday, 11 August 2011

Math GRE - #10

What is the coefficient of $x^3$ in the expansion of $(1+x)^3(2+x^2)^{10}$?

  • $2^{14}$
  • $31$
  • $\dbinom{3}{1}+\dbinom{10}{1}$
  • $\dbinom{3}{1}+2\dbinom{10}{1}$
  • $\dbinom{3}{3}\dbinom{10}{1}2^9$

Solution :

This is a straightforward application of the binomial theorem. We need to take into account of the coefficients of the constant term, $x$, $x^2$, and $x^3$ from both $(1+x)^3$ and $(2+x^2)^{10}$.
For $(1+x)^3$, we have:

  • $c_1 = 1$
  • $c_x=\dbinom{3}{1}=3$
  • $c_{x^2}=\dbinom{3}{2}=3$
  • $c_{x^3}=\dbinom{3}{3}=1$

For $(2+x)^10$, we have:
  • $d_1=2^10$
  • $d_x=0$
  • $d_{x^2}=\dbinom{10}{1}2^9$
  • $d_{x^3}=0$
Fortunately, $(2+x^2)^{10}$ does not have an $x$ or $x^3$ term.
Thus the coefficient of $x^3$ in the product is: \[\begin{eqnarray*}
c_1\cdot d_{x^3} + c_x\cdot d_{x^2} + c_{x^2} \cdot d_x + c_{x^3}\cdot d_1 & = & \dbinom{3}{1}\dbinom{10}{1}2^9 + \dbinom{3}{3}2^{10} \\
& = & 3\cdot 10 \cdot 2^9 + 2\cdot 2^9 \\
& = & 32\cdot 2^9 = 2^{14} \end{eqnarray*}\]

0 comments:

Post a Comment

This webpage is LaTeX enabled. To type in-line formulae, type your stuff between two '$'. To type centred formulae, type '\[' at the beginning of your formula and '\]' at the end.